FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature.

نویسندگان

  • Amélie Sabine
  • Esther Bovay
  • Cansaran Saygili Demir
  • Wataru Kimura
  • Muriel Jaquet
  • Yan Agalarov
  • Nadine Zangger
  • Joshua P Scallan
  • Werner Graber
  • Elgin Gulpinar
  • Brenda R Kwak
  • Taija Mäkinen
  • Inés Martinez-Corral
  • Sagrario Ortega
  • Mauro Delorenzi
  • Friedemann Kiefer
  • Michael J Davis
  • Valentin Djonov
  • Naoyuki Miura
  • Tatiana V Petrova
چکیده

Biomechanical forces, such as fluid shear stress, govern multiple aspects of endothelial cell biology. In blood vessels, disturbed flow is associated with vascular diseases, such as atherosclerosis, and promotes endothelial cell proliferation and apoptosis. Here, we identified an important role for disturbed flow in lymphatic vessels, in which it cooperates with the transcription factor FOXC2 to ensure lifelong stability of the lymphatic vasculature. In cultured lymphatic endothelial cells, FOXC2 inactivation conferred abnormal shear stress sensing, promoting junction disassembly and entry into the cell cycle. Loss of FOXC2-dependent quiescence was mediated by the Hippo pathway transcriptional coactivator TAZ and, ultimately, led to cell death. In murine models, inducible deletion of Foxc2 within the lymphatic vasculature led to cell-cell junction defects, regression of valves, and focal vascular lumen collapse, which triggered generalized lymphatic vascular dysfunction and lethality. Together, our work describes a fundamental mechanism by which FOXC2 and oscillatory shear stress maintain lymphatic endothelial cell quiescence through intercellular junction and cytoskeleton stabilization and provides an essential link between biomechanical forces and endothelial cell identity that is necessary for postnatal vessel homeostasis. As FOXC2 is mutated in lymphedema-distichiasis syndrome, our data also underscore the role of impaired mechanotransduction in the pathology of this hereditary human disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic-valve formation.

Lymphatic valves are essential for efficient lymphatic transport, but the mechanisms of early lymphatic-valve morphogenesis and the role of biomechanical forces are not well understood. We found that the transcription factors PROX1 and FOXC2, highly expressed from the onset of valve formation, mediate segregation of lymphatic-valve-forming cells and cell mechanosensory responses to shear stress...

متن کامل

Mechanosensitive β-catenin signaling regulates lymphatic vascular development

The Wnt/β-catenin signaling is an evolutionarily conserved pathway that plays a pivotal role in embryonic development and adult homeostasis. However, we have limited information about the involvement of Wnt/β-catenin signaling in the lymphatic vascular system that regulates fluid homeostasis by absorbing interstitial fluid and returning it to blood circulation. In this recent publication we rep...

متن کامل

Lymph flow regulates collecting lymphatic vessel maturation in vivo.

Fluid shear forces have established roles in blood vascular development and function, but whether such forces similarly influence the low-flow lymphatic system is unknown. It has been difficult to test the contribution of fluid forces in vivo because mechanical or genetic perturbations that alter flow often have direct effects on vessel growth. Here, we investigated the functional role of flow ...

متن کامل

Downregulation of FoxC2 Increased Susceptibility to Experimental Colitis: Influence of Lymphatic Drainage Function?

BACKGROUND Although inflammation-induced expansion of the intestinal lymphatic vasculature (lymphangiogenesis) is known to be a crucial event in limiting inflammatory processes, through clearance of interstitial fluid and immune cells, considerably less is known about the impact of an impaired lymphatic clearance function (as seen in inflammatory bowel diseases) on this cascade. We aimed to inv...

متن کامل

Foxc1 and Foxc2 deletion causes abnormal lymphangiogenesis and correlates with ERK hyperactivation.

The lymphatic vasculature is essential for maintaining interstitial fluid homeostasis, and dysfunctional lymphangiogenesis contributes to various pathological processes, including inflammatory disease and tumor metastasis. Mutations in FOXC2 are dominantly associated with late-onset lymphedema; however, the precise role of FOXC2 and a closely related factor, FOXC1, in the lymphatic system remai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 125 10  شماره 

صفحات  -

تاریخ انتشار 2015